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Abstract—In response to escalating drone traffic, this paper
investigates the interplay between drone density, communication
frequency, and collision avoidance. We utilize artificial potential
fields as a guidance mechanism for drones navigating in dense
airspace. Through numerical simulations involving two to nine
drones, we analyze how communication frequency correlates
with collision rates as drone density increases. Our findings
reveal the nuanced relationship between these variables, showing
that communication frequency requirements increase with drone
density for collision-free navigation. Furthermore, we present a
theoretical framework predicting the relationship between drone
density and the minimal communication frequency required for
safe operations. We also demonstrate a simple experiment in the
flying arena to highlight the influence of the rate of positional
information sharing on the paths taken by drones.

Index Terms—Artificial Potential Fields, communication fre-
quency, collision avoidance

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), are becoming an in-
creasingly commonplace technology with a wide range of
applications spanning logistics, surveillance, agriculture, and
beyond. The burgeoning growth in the use of drones is
leading to denser aerial environments, which pose significant
operational challenges, notably collision avoidance.

Ensuring safe, collision-free drone navigation necessitates
robust communication between drones. This communication
allows drones to ’perceive’ each other in the airspace and
adjust their movements accordingly. However, the ideal fre-
quency of this communication remains an area of critical
investigation. Too high a frequency can overburden the com-
munication systems and increase power consumption, while
too low a frequency can risk late detection of nearby drones,
leading to potential collisions.

Many algorithms exist in the field of path planning (for
UAVs, ground robots and others), such as the the A* algorithm
[1], [2] [3], the rapid exploration random tree (RRT) [4] [5]
and artificial potential fields (APF) [6]. APFs are particularly
popular in real time applications due to their simplicity and
low computational requirement. APF algorithms have been
improved continuously, such as adapting the original algorithm
used for ground robots to work with quad-rotors [7], tackling
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the problem of vehicles getting stuck in local minima [8],
reducing sharp turn angles as well as energy consumption [9].
[10] combined APF with vortex panel methods (commonly
used in airfoil aerodynamic calculations [11]) to allow for the
placement and avoidance of obstacles.

The aforementioned path planning works usually assume
all attributes such as positions, velocities, altitudes etc. are
known at all times. In reality, especially for large swarms of
vehicles, maintaining a constant flow of such data necessitates
robust inter-vehicle communication [12], [13]. Moreover, for
such vast swarms, communication latency could undermine
the effectiveness of the deconfliction algorithms. Strategies to
mitigate this include clustering vehicles to reduce latency [14]
and leveraging cellular 5G networks for reliable communica-
tions [15].

In the quest to optimize these strategies, the need for prudent
use of bandwidth often emerges as an important consideration
[16]. This paper takes a deliberate step back to examine
the fundamental requirements of inter-drone communication
frequency to avoid collisions. By doing so, we aim to identify
the minimum frequency required for collision-free operation,
thereby contributing to the efficient use of communication
resources in large drone swarms.

This study aims to explore the relationship between the
rate of inter-drone communication and collision occurrences
in dense airspace. We employ a simulation approach, gen-
erating a series of pseudo-random cases with an increasing
number of drones. We use APF as the path planning and
collision avoidance mechanism. The communication frequency
is systematically manipulated to study its impact on collision
rates. We hypothesise that few collisions will occur until a
critical frequency, after which the success rate will drop before
flattening out again. We then present a theoretical framework
aimed at predicting the minimum communication frequency
necessary for safe drone operation. We also investigate a case
with two drones both in simulation and in a real experiment
inside ENAC’s indoor flight arena, Voliere Drones Toulouse
Occitanie (VTO). We compare the flight paths generated in
simulation and in reality to validate our simulation parameters.

The contributions of this paper are identifying a relationship
in 2D numerical simulations between the maximum number
of timesteps between positional updates (or positional update
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frequency) and the number of drones in a fixed area. This
relationship is backed up through a theoretical model.

II. SIMULATION SETUP

A. Problem Statement

We investigate the effect of changing the communication
rate between drones on the rate of collision in a simulated
environment.

The drones are confined to a two-dimensional square arena
of side-length 8m. An individual simulation consists of run-
ning a case, consisting of Nd drones placed within the arena
with specified initial positions and destinations. Each case
represents a unique configuration of drone numbers, starting
positions, destinations, and communication frequencies. As a
path planning algorithm (guiding each drone to its destination
while avoiding other drones) we employ APF. By analysing
these simulations, we collect statistical data to quantify the
impact of communication rate and drone density on collision
rates. In the following sections, we delve into the specifics
of our case setup, the path planning algorithm, and other
parameters that play important roles in our investigation.

B. Case Generation

Simulations were designed to model a variety of scenarios
involving different numbers of drones and communication
frequencies. For each of 2 through 9 drones, we generated
1000 pseudo-random cases (for 8000 cases in total), with
each case specifying the starting positions of the drones and
their destinations. Starting positions were at least one collision
distance (see Section II-D and Table I) apart to ensure no two
drones were colliding at the start of a simulation. One of the
scenarios with three drones is shown in Figure 1 to serve as
a visual example.

C. Simulating Communication Between Drones

Each case is run with communication rates ranging from
updates at every simulation timestep to no communication
at all. In our simulation model, each drone is assigned a
‘transmitting’ boolean attribute. This attribute is set to True if
the drone shares its position at the current simulation timestep,
and False otherwise. When the ‘transmitting’ attribute is False
for any drone, its peers use the drone’s last known location
for path planning. It is worth mentioning that the current
location of a non-transmitting drone could be predicted more
accurately by taking into account its last known velocity and
direction. However, this addition would involve an increase in
computation time, and it is a subject left for future studies,
along with other aspects of communication modeling such as
bandwidth saturation, distance effects, communication channel
frequency, and external factors.

In our model, as defined in Table I, we set ∆t = 0.02s,
which corresponds to a baseline simulation frequency of 50Hz.
To establish a communication frequency of 25Hz, the drones
are programmed to communicate every 2∆t; for a frequency
of 5Hz, communication occurs every 10∆t, and so on. The
path planning process is assumed to occur onboard each drone

at the maximum frequency of 50Hz. It is noteworthy that at
the start of the simulation, i.e., t = 0, all drones are in the
transmitting state.

(a) Start (b) End

Fig. 1: Scenario with three drones (with pseudo-random
starting and destination positions) at the start and end of a
simulation. The path followed by each drone is shown in (b). A
circle of radius rc/2 (see Table I) surrounds each drone, if two
such circles come into contact (i.e. two drones get to within
one collision distance of each other), a collision is recorded.

D. Mathematical Background of Artificial Potential Fields

Drone movements in our study were guided by APFs, a
method that has shown promising results in both simulation
and in experiments in the VTO flight arena [10].

In the context of this work, APFs were used to model the
interactions between individual drones and their environment.
Specifically, each drone’s destination was modelled as an at-
tractive sink term, while other drones were treated as repulsive
sources, each also possessing a vortex term. This vortex term
facilitates smooth and predictable trajectory adjustments when
drones converge. It ensures a consistent avoidance direction,
mirroring the strategies enforced by aviation legislation [17]:
for example, a counter-clockwise vortex will prompt both
drones to turn right to avoid collision. At each time step,
each drone calculates the aggregate effect of its sink, the
sources and vortices of other drones, resulting in a vector
dictating its movement direction. This vector, updated every
∆t, guides the drone’s motion along its path. Another way
to conceptualise APFs is to envision the instantaneous vector
field produced by the sources, vortices, and sink. Each drone
moves along the streamline at its location for a duration of
∆t. At every new timestep, this streamline changes due to
the movements of other drones, leading the drone to follow
the updated streamline until the next update occurs. Refer to
Figure 2 for a graphical representation of an instantaneous
vector field during a simulation.

E. Simulation Parameters

Several parameters are required for the simulations; their
values are presented in Table I. The collision distance repre-
sents the distance between the centers of two drones, below
which a collision is considered to have occurred. The mini-
mum detection distance defines the radius of perception around
a drone, beyond which it no longer detects or avoids other



Fig. 2: Instantaneous vector field at t = 0 from the perspective
of one of three drones, showing its initial path to its destination
sink. This path is updated at every time step to account for
the movement of other drones, leading to the final path seen
in Figure 1 (b).

drones. This concept is particularly valuable for scalability,
as it restricts the knowledge of drones about one another
to within this radius (see Figure 3 for a visualisation). By
detecting drones only a certain distance away, we ensure the
computing cost scales with drone density rather than number
of drones (assuming guidance calculations using APFs occur
onboard each drone). The maximum simulation duration is the
maximum time the simulation is allowed to run before starting
the next.

By definition, APFs do not take the inertia of drones into ac-
count, which inevitably omits real-world constraints imposed
by drone momentum. In reality, a drone cannot instantaneously
alter its trajectory due to inherent inertia. To accommodate
this in our model, we utilize a collision distance rc, below
which any two drones are considered to be colliding. While
rc designates the threshold for conflict, it can also implicitly
provide a safety buffer. By adjusting the rc value appropriately,
we can indirectly account for the effect of inertia. A larger rc
allows drones more time and space to enact evasive maneuvers
given their inertia. Consequently, while our model assumes
zero inertia for simplicity, through the careful selection of the
rc value, we can accommodate the implications of actual drone
inertia on collision avoidance.

We acknowledge that there is room for further optimization
of these parameters, which were chosen through testing both in
numerical simulation (Sec.III) and in the flying arena (Sec.V).
Future work could involve the use of reinforcement learning
or other data-driven techniques to fine-tune these parameters,
resulting in a reduction the distance travelled by the UAVs (and
therefore in energy consumption), as well as the likelihood of
conflict.

A modification was introduced to the conventional equation

Parameter Symbol Value Units
Square Arena Sidelength L 8 m
Sink (Goal) Strength Qg 5 m2/s
Source Strength Qs 1 m2/s
Vortex Strength Qv 0.25 m2/s
Drone Velocity vd 1 ms−1

Collision Distance rc 0.5 m
Minimum Detection Distance rdet 2 m
Time Step Size ∆t 0.02 s
Maximum Simulation Duration - 40 s
Timesteps between updates n variable -
Communication frequency fc(1/n∆t) variable s−1

Number of drones Nd variable -

TABLE I: Simulation parameters

Fig. 3: Illustration to show minimum detection distance. Any
drones outside the detection radius of a drone will not be
included in its path planning calculation

for velocity induced by a source. The source was modeled to
decay with the inverse cube of the distance, rather than the
inverse of the distance itself. This adjustment enhances the
effect of the source at close range while reducing its influence
more rapidly at longer distances (see Figure 4). The revised
expressions for the source-induced velocity are as follows:

V⃗source =
Q

2πr
êr (Original) (1)

V⃗source =
Q

2πr3
êr (Modified) (2)

In these equations, Vsource represents the velocity induced by
the source, Q is a parameter representing the source strength,
and r denotes the distance from the source.

III. RESULTS

We have tested 8000 pseudo-randomly generated scenarios
using the parameters outlined in Section II-E. Each scenario
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Fig. 4: A comparison illustrating the decay of source-induced
velocities with distance for the original and modified formu-
lations.

simulation was terminated as soon as a collision was detected,
marking the scenario as a failure. Out of every 1000 specific
simulations with varying drone numbers and frequencies, we
noted the number of failures. The results from these simu-
lations, encompassing drone numbers from two to nine, are
shown in Figure 5.

The data from the simulations shows a clear correlation
between communication frequency and collision rates. This
relationship is as we initially hypothesized: with frequencies
below a certain threshold, the collision rates remain low.
Within the scope of our tested drone numbers, maintaining
a communication frequency of at least every 101∆t (or 5Hz)
significantly mitigates collision risk. However, it should be
noted that these values are dependent on the velocity of
the drones - for instance, doubling drone velocity would
theoretically necessitate a shift of the curves in Figure 5
towards the left, implying a higher necessary communication
frequency.

Furthermore, our simulations suggest that drone numbers
play a crucial role in determining the successful operation
threshold. For fewer drones, this drop-off in success rate
becomes apparent at lower frequencies. For instance, in a sce-
nario with only two drones, the onset of this decline in success
rate occurs around n ≈ 25, compared to n ≈ 10 for scenarios
with nine drones. This shift towards lower frequencies implies
that, as drone numbers increase, the requisite communication
frequency for successful operation also increases.

These findings form the basis for our theoretical exploration
in Section IV, where we endeavor to further interpret these
results. Through this, we aim to provide a comprehensive
model to predict behavior under varying drone velocities
and numbers, contributing towards improved scalability and
efficiency in drone operation.

Fig. 5: Numerical Simulation Results. Collision-free rate ver-
sus the number of timesteps between position transmissions
n, representing decreasing communication frequency. The
collision-free rate is calculated as a proportion of 1000 sim-
ulations. The x-axis represents the timesteps between updates
on a logarithmic scale, ensuring, for example, that halving the
frequency is uniformly represented throughout the graph.

IV. THEORETICAL FRAMEWORK

We propose a simplified theoretical model to estimate how
the minimum frequency of communication required to avoid
drone collisions scales with drone density and velocity. We
then combine the observed results from Figure 5 with this
model to predict the minimum frequency for higher drone
counts.

A. Analysis of Simplified Collision Model

The first step in this model is to predict how a collision
occurs. We take the worst case scenario where two drones at
t = t0 are heading directly towards each other at a closing
speed of 2v as depicted in Figure 6.

The initial distance separating the drones is d0+rc (i.e. one
drone is at a distance d0 from entering the collision radius rc
of the other). We assume that if the drones communicate their
position at any point after this, then they are able to avoid each
other with evasive manoeuvres thanks to the highly repulsive
source terms which grow rapidly as distance between drones
reduces (see Figure 4). As a consequence, we assume that the
last communication occurs at t = t0, and that the collision will
occur at t = t0 + n∆t, where the communication frequency
fc,min = 1/(n∆t) (i.e. the drones would have had their next
opportunity to communicate at the moment of collision, thus
fc,min is the minimum required communication frequency to
avoid the collision). It follows that
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Fig. 6: Illustration of worst case collision scenario. The frame
of reference is Drone 1, with Drone 2 approaching at a closing
speed of 2v. The two drones are separated by a distance
rc + d0. Here, rc denotes the collision radius around Drone
1 (indicated by the dashed circle) and d0 is the additional
separation distance. Drone 2 is thus positioned d0 units away
from Drone 1’s collision region.

d0 = 2v(n∆t)

∴ n =
d0

2v∆t
(3)

and by consequence (since fc ≥ fc,min)

fc,min =
1

n∆t
=

(
d0

2v∆t
∆t

)−1

∴ fc ≥
2v

d0
(4)

and n ≤ d0
2v∆t

= nmax (5)

We are left with a relationship which suggests that the
minimum communication frequency to avoid collision is pro-
portional to velocity of the drones and inversely proportional
to the distance d0, which still needs to be predicted.

B. Relationship between Drone Number and Nearest Neighbor
Distance

Statistically, we can think of d0 + rc as being the average
distance between drones before they collide. We also assume
that the two drones which collide are each others’ nearest
neighbors at t = t0. Using these assumptions we need to
find the average distance between a drone and its nearest
neighbor in our square arena. Even if this prediction for
d0 is not very accurate due to an oversimplified model, the
way d0 scales with number of drones Nd can be used to
predict behaviour with higher drone densities. For two drones,
which are necessarily each others’ nearest neighbors, the
nearest neighbor distance is the average distance between two
randomly placed points in a square of sidelength L. From [18]
this can be analytically expressed as:

d0 + rc = (2 +
√
2 + 5 ln(

√
2 + 1))L/15 ≈ 0.52L (6)

Plugging in this value for d0 into (5) and using the values
for v, L, rc and ∆t defined in Table I, we obtain n ≈ 92.
This is higher than observed value of n ≈ 25. Our model may
have been too simplistic (specifically, while drones will most

likely collide with their nearest neighbor at the last point of
communication, most collisions occur when drones get closer
than the average nearest neighbor distance), nevertheless we
will pursue this approach to find a scaling relationship between
d0 and the number of drones (or the drone density). Assume
that the arena initially has just Nd = 2 drones with nearest
neighbor distance d0. We increase the number of drones to
Nd = 8 by splitting the arena into four equal squares with
half the sidelength of the original and place two drones into
each smaller square. Consequently, we can expect the average
nearest neighbor distance halve as well. We deduce therefore
that, for a fixed arena size:

d0 ∼ 1/
√

Nd (7)

The scaling relationship in (7) can also be estimated by
looking at an analysis from [19], pictured in Figure 7.

1

1

3

1

4

Fig. 7: Simplified formulation to show how distance to nearest
neighbor varies with number of drones in a square of unit area
[19]. Each black circle represents a drone. By extending the
pattern with a greater number of drones Nd, we can deduce
that nearest distance between neighbors d0 = 1/(

√
Nd + 1)

which supports our result in (7).

Combining (7) with (5) and (4) we have

nmax ∼ N
−1/2
d v−1∆t−1 (8)

fc,min ∼ N
1/2
d v (9)

If the arena area is not fixed, then the scaling relationship
follows drone number per unit area (drone density) instead of
drone number. For a three dimensional case, the scaling would
go as follows: d0 ∼ N

−1/3
d .

C. Comparison of Simulation Results and Theory

In an attempt to verify scaling relations derived in Sec-
tion IV in our simulations, we isolate the cases for Nd = 2
and Nd = 8 as shown in Figure 8. For Nd = 2, nmax,2 ≈ 25
and for Nd = 8, nmax,8 ≈ 10. Using (8), we expect

(
nmax,2

nmax, 8

)
theory

=

(
Nd = 2

Nd = 8

)− 1
2

= 2 (10)

From our simulations, the actual value observed is 25/10 =
2.5, compared to the theoretical value of 2. Given the approxi-
mate nature of the values for nmax taken from Figure 8, this is



encouraging. In order to verify the scaling hypotheses from (8)
and (9) more thoroughly, a lower value of ∆t could be used to
increase the resolution of the results. A higher number of cases
(10,000 instead of 1000 for example) would also be beneficial.
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Fig. 8: Collision-free rate versus n (time steps between up-
dates) for 2 and 8 drones. The two vertical lines represent the
approximate transition away from collision-free cases (nmax)

In order to more thoroughly compare the theoretical and
simulated relationship between nmax and Nd, we need a
consistent method of deducing nmax from simulated results.
It is difficult to deduce from Figure 5 the exact moment at
which the collision-free rate drops below 100% (or 1). As a
compromise, we propose the following definition: nmax is the
number of time-steps between positional updates for which
at least 99% of simulations complete without any collisions.
We apply this definition (interpolating linearly between the
discrete results where necessary) to obtain a value of nmax for
each of 2 through 9 drones, plotted on Figure 9. We overlap
our result in (8): nmax = k/

√
Nd. The value of k is determined

by a least-squares fit to the numerical simulation data.

V. COMPARISON TO REAL FLIGHTS IN THE VOLIERE

A. Experimental Setup

The Voliere is an indoor drone test facility located in
Toulouse, France. It contains a usable region of 8m×8m×8m
to carry out test flights as shown in Figure 10a.

The test environment is equipped with high-precision local-
ization and measuring instruments, including a state-of-the-
art Opti-Track system with 16 cameras operating at 320Hz.
The setup allows for the deployment of various types of
vehicles for different experiments. As an example, Figure 12b
showcases the DJI-Tello quad-rotor, a candidate for use in
hardware experiments. This quad-rotor is equipped with a 2.4
GHz 802.11n Wi-Fi connection, enabling control via a ground
station. The DJI-Tello model is useful in that it accepts direct
input for desired velocity. It strives to adhere to the provided
reference velocity by drawing comparisons to its onboard
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Fig. 9: Numerical simulation versus theoretical relationship
between maximum number of time steps between positional
updates to ensure a 99% rate of collision-free simulations and
the number of drones.

(a) The Toulouse Occitanie Drone Flight Arena
(or Voliere)

(b) Tello EDU Quad-rotor

Fig. 10: Images showing the Voliere and quad-rotor used for
drone experiments.

velocity estimation, derived from a downward-facing optic-
flow camera.



B. Trajectory Plots

In an attempt to validate the guidance algorithm used
in simulation, we compare one case in simulation with an
identical case in experiment. The result is plotted in Figure 11.
In Figure 12, we show the effect on the path flown by drones
as a result of increasing the number of time steps between
positional updates n, both in simulation and in experiment.

Fig. 11: Visualisation of the paths generated by two drones
swapping positions. One drone starts at (-3,0) and flies to (3,0);
the other at (3,0) and flies to (-3,0). The dotted line represents
the paths taken in the numerical simulation, while the solid line
shows the paths taken by real drones in the flying arena. The
simulation parameters are ∆t = 0.025s, n = 120 (updating
positions every 3s), and drone velocity vd = 0.5ms−1

VI. CONCLUSIONS

In this study, we conducted numerical simulations with
Nd = 2 to Nd = 9 drones operating in a defined flying arena
to investigate the influence of the number of timesteps between
positional updates (n) and identify a threshold, nmax, signify-
ing the transition away from fully collision-free operations.

The main findings and contributions related to our research
objective can be summarized as follows:

• For each value of Nd, we successfully identified the cor-
responding threshold value nmax. Notably, as the number
of drones Nd increased, the required nmax decreased,
indicating the necessity for higher update frequencies
to maintain collision-free operation with an increasing
number of drones.

• A theoretical framework was developed to delve deeper
into the relationship between the number of drones and
the transition point nmax. This framework concluded that
in 2D, nmax should scale with 1/

√
Nd.

(a) Real Experiments

(b) Numerical Simulations

Fig. 12: Paths showing two drones swapping positions while
avoiding each other using artificial potential fields. The first
drone starts at (-3,0) and heads towards (3,0); the second
drone starts at (3,0) and heads to (-3,0). This scenario is
run multiple times while increasing the number of timesteps
between positional updates n. These are incremented from
n = 1 to n = 160 for ∆t = 0.025s. As predicted, this has a
significant effect on the paths of the drones. In (a) we see the
paths for the real experiments in the flying arena. In (b) we see
the paths for the numerical simulations of the same scenario.
In both cases, the thick red line represents the lowest possible
value of n, where drones are communicating the most.

• Both the theoretical predictions and the results from the
numerical simulations were plotted together, showing a



promising correlation. However, to firmly establish this
relationship, more data is necessary, which could entail
more test cases or increasing the number of drones
involved in the simulations.

• Beyond the simulations, real-world experiments were also
conducted in our flying arena. The real drones used the
same guidance algorithm (Artificial Potential Fields) as
used in the simulations, and were instructed to swap
positions in a simple scenario. The paths they followed in
the process were recorded and compared with those from
the simulations, providing a real-world validation of the
developed theoretical framework.

Future research could focus on refining and testing the
proposed framework with more complex scenarios or real-
world drone operations. Furthermore, investigating the impact
of other variables, such as drone speed, size, or onboard
collision-avoidance systems, on the relationship between the
number of drones and nmax could provide valuable insights.

Overall, the contributions made in this study, along with
the empirical evidence and theoretical foundation, aim to
enhance the safety and efficiency of drone operations in the
progressively congested skies of the future.
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